Geometric Particle Swarm Optimisation
نویسندگان
چکیده
Using a geometric framework for the interpretation of crossover of recent introduction, we show an intimate connection between particle swarm optimization (PSO) and evolutionary algorithms. This connection enables us to generalize PSO to virtually any solution representation in a natural and straightforward way. We demonstrate this for the cases of Euclidean, Manhattan and Hamming spaces.
منابع مشابه
Feature Extraction and Detection of Simple Objects Using Particle Swarm Optimisation
The purpose of this paper is to demonstrate the application of particle swarm optimisation to the detection of simple objects. The paper’s new contribution to object detection is application of particle swarm optimisation for extraction of geometric properties of an object in an image for accurate recognition especially in noisy environments. In this approach, the edges and the corners of an ob...
متن کاملGeometric Particle SwarmOptimization
Using a geometric framework for the interpretation of crossover of recent introduction, we show an intimate connection between particle swarm optimisation (PSO) and evolutionary algorithms. This connection enables us to generalise PSO to virtually any solution representation in a natural and straightforward way. The new geometric PSO (GPSO) applies naturally to both continuous and combinatorial...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملImproving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at t...
متن کاملA Particle Swarm Optimisation Approach in the Construction of Optimal Risky Portfolios
In this paper, we apply particle swarm optimisation to the construction of optimal risky portfolios for financial investments. Constructing an optimal risky portfolio is a high-dimensional constrained optimisation problem where financial investors look for an optimal combination of their investments among different financial assets with the aim of achieving a maximum reward-to-variability ratio...
متن کامل